skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Buida, Thomas J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Multiple sequence alignments and phylogenetic trees are rich in biological information and are fundamental to research in biology. PhyKIT is a tool for processing and analyzing the information content of multiple sequence alignments and phylogenetic trees. Here, we describe how to use PhyKIT for diverse analyses, including (i) constructing a phylogenomic supermatrix, (ii) detecting errors in orthology inference, (iii) quantifying biases in phylogenomic data sets, (iv) identifying radiation events or lack of resolution using gene support frequencies, and (v) conducting evolution‐based screens to facilitate gene function prediction. Several PhyKIT functions that streamline multiple sequence alignment and phylogenetic processing—such as renaming FASTA entries or tree tips—are also discussed. These protocols demonstrate how simple command‐line operations in the unified framework of PhyKIT facilitate diverse phylogenomic data analysis and processing, from supermatrix construction and diagnosis to gaining clues about gene function. © 2024 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Installing PhyKIT and syntax for usage Basic Protocol 2: Constructing a phylogenomic supermatrix Basic Protocol 3: Detecting anomalies in orthology relationships Basic Protocol 4: Quantifying biases in phylogenomic data matrices and related measures Basic Protocol 5: Identifying polytomies Basic Protocol 6: Assessing gene‐gene coevolution as a genetic screen 
    more » « less
  2. Hejnol, Andreas (Ed.)
    Molecular evolution studies, such as phylogenomic studies and genome-wide surveys of selection, often rely on gene families of single-copy orthologs (SC-OGs). Large gene families with multiple homologs in 1 or more species—a phenomenon observed among several important families of genes such as transporters and transcription factors—are often ignored because identifying and retrieving SC-OGs nested within them is challenging. To address this issue and increase the number of markers used in molecular evolution studies, we developed OrthoSNAP, a software that uses a phylogenetic framework to simultaneously split gene families into SC-OGs and prune species-specific inparalogs. We term SC-OGs identified by OrthoSNAP as SNAP-OGs because they are identified using a s plitti n g a nd p runing procedure analogous to snapping branches on a tree. From 415,129 orthologous groups of genes inferred across 7 eukaryotic phylogenomic datasets, we identified 9,821 SC-OGs; using OrthoSNAP on the remaining 405,308 orthologous groups of genes, we identified an additional 10,704 SNAP-OGs. Comparison of SNAP-OGs and SC-OGs revealed that their phylogenetic information content was similar, even in complex datasets that contain a whole-genome duplication, complex patterns of duplication and loss, transcriptome data where each gene typically has multiple transcripts, and contentious branches in the tree of life. OrthoSNAP is useful for increasing the number of markers used in molecular evolution data matrices, a critical step for robustly inferring and exploring the tree of life. 
    more » « less
  3. Stajich, J (Ed.)
    Abstract Bioinformatic analysis—such as genome assembly quality assessment, alignment summary statistics, relative synonymous codon usage, file format conversion, and processing and analysis—is integrated into diverse disciplines in the biological sciences. Several command-line pieces of software have been developed to conduct some of these individual analyses, but unified toolkits that conduct all these analyses are lacking. To address this gap, we introduce BioKIT, a versatile command line toolkit that has, upon publication, 42 functions, several of which were community-sourced, that conduct routine and novel processing and analysis of genome assemblies, multiple sequence alignments, coding sequences, sequencing data, and more. To demonstrate the utility of BioKIT, we conducted a comprehensive examination of relative synonymous codon usage across 171 fungal genomes that use alternative genetic codes, showed that the novel metric of gene-wise relative synonymous codon usage can accurately estimate gene-wise codon optimization, evaluated the quality and characteristics of 901 eukaryotic genome assemblies, and calculated alignment summary statistics for 10 phylogenomic data matrices. BioKIT will be helpful in facilitating and streamlining sequence analysis workflows. BioKIT is freely available under the MIT license from GitHub (https://github.com/JLSteenwyk/BioKIT), PyPi (https://pypi.org/project/jlsteenwyk-biokit/), and the Anaconda Cloud (https://anaconda.org/jlsteenwyk/jlsteenwyk-biokit). Documentation, user tutorials, and instructions for requesting new features are available online (https://jlsteenwyk.com/BioKIT). 
    more » « less